DRP Validation


A pilot study to evaluate the quality and validity of special core analysis (SCA) data from Digital Rock Physics (DRP) has provided results that are comparable to laboratory measurements. The DRP technique applied in this study employs the Lattice Boltzmann Method (LBM) for computing relative permeability (Kr(Sw)) and capillary pressure (Pc(Sw)) curves from high resolution digital pore structures obtained from micro-CT image data.

DRP conventional core analysis (DRP-CCA) computations include porosity, permeability, formation factor, and dynamic elastic properties. DRP special core analysis (DRP-SCA) computations include Kr(Sw) and Pc(Sw). The translation of DRP-CCA and DRP-SCA determinations from imaged 4 mm subsamples to the 38 mm core plug-scale was achieved by upscaling the data for the various flow units and porosity structures in each plug.

DRP-SCA results and laboratory measurements from similar rock types in the same wells are comparable and show inherent process and inter-lab uncertainties. The dynamic range of the computed relative permeability curves is superior to the laboratory measurements. The comparisons further showed the benefit of the DRP images and computations in capturing the detailed pore structure and fabric of the rock, especially in the capillary pressure responses. The DRP-SCA computations accentuate spontaneous imbibition and the transition to forced imbibition, a region that traditional laboratory methods may not adequately capture. Computations for different wetting conditions provide relative permeability data that cover all possible rock-fluid wettability states. Similar attempts in traditional laboratory experiments would be long, tedious and expensive.

DRP can provide satisfactory and complementary data for reservoir studies. The images are readily available and can be used for sensitivity studies. The workflow allows users to conduct their own validation tests to determine the applicability of the method.


Contact us for more details